Characterization of nanostructured catalysts and silicon microstructures in polymer electrolyte membrane fuel cells
نویسندگان
چکیده
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Petri Kanninen Name of the doctoral dissertation Characterization of nanostructured catalysts and silicon microstructures in polymer electrolyte membrane fuel cells Publisher School of Chemical Technology Unit Department of Chemistry Series Aalto University publication series DOCTORAL DISSERTATIONS 76/2014 Field of research Physical Chemistry Manuscript submitted 27 February 2014 Date of the defence 18 June 2014 Permission to publish granted (date) 13 May 2014 Language English Monograph Article dissertation (summary + original articles) Abstract Direct methanol fuel cells (DMFC) produce electrical energy directly from chemical energy. They are a promising candidate for power sources of portable devices due to the high energy density of methanol and the quick recharging procedure by fuel insertion. However, the problem areas of the DMFC are the slow electro-oxidation of methanol and the permeated methanol reacting at the cathode. New catalysts are constantly searched but they are often tested only for catalytic activity and the DMFC testing is omitted even though the catalyst layer (CL) structure has a large impact on the performance. Miniaturization of the system is also necessary for portable applications. Silicon etching can be used to fabricate small structures for fuel cells replacing or enhancing the functions of laboratory-scale components.Direct methanol fuel cells (DMFC) produce electrical energy directly from chemical energy. They are a promising candidate for power sources of portable devices due to the high energy density of methanol and the quick recharging procedure by fuel insertion. However, the problem areas of the DMFC are the slow electro-oxidation of methanol and the permeated methanol reacting at the cathode. New catalysts are constantly searched but they are often tested only for catalytic activity and the DMFC testing is omitted even though the catalyst layer (CL) structure has a large impact on the performance. Miniaturization of the system is also necessary for portable applications. Silicon etching can be used to fabricate small structures for fuel cells replacing or enhancing the functions of laboratory-scale components. In the first part of this thesis, new catalysts for the DMFC are studied with the emphasis on the CL structure. Different carbon supports for the anode were studied: standard carbon black and alternative few-walled carbon nanotubes (FWCNT) and graphitized carbon nanofiber (GNF). The alternative supports showed better DMFC performance but their stability was lower than with carbon black. However, the CL formed with GNF showed a very porous structure enhancing the mass transfer, so that higher binder content could be used improving the stability to the level of carbon black and the performance by 30%. The FWCNTs were also investigated as a platform for enzymatic methanol oxidation by studying the electrochemical properties of an immobilized cofactor pyrroloquinoline quinone (PQQ). A large amount of PQQ was adsorbed having a strong redox response and good stability in a wide pH window. For the cathode, a methanol-tolerant, Pt-free nitrogen-doped FWCNTs were tested in an alkaline DMFC as such testing is not often made. Its performance was remarkably 4 times better than with Pt when synthetic air was used as the oxidant. In the second part of thesis, an integrated gas diffusion layer (GDL) consisting of Si nanoneedles (nanograss) was tested in a micro fuel cell (MFC). The layer functioned properly at low current densities. For high power applications, a standard carbon cloth GDL was tested with the nanograss as a contact surface reducing the resistance between the GDL and the flow field. The use of the nanograss improved the MFC performance and stability. Finally, the MFCs were used as a catalyst testing platform and the results were compared with a similar test in a laboratory-scale DMFC. The results varied showing that the DMFC components also have a large impact on catalyst testing.
منابع مشابه
Synthesized Bimetallic Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Fuel Cells
In the present study, a step by step process was applied to synthesize bimetallic electrocatalyst (Ru and Pt on VulcanXC-72R). This process can reduce the amount of platinum and increase the gas diffusion electrode (GDE) performance in the cathodic reaction of polymer electrolyte membrane fuel cells (PEMFCs). Using the impregnation by hydrothermal synthesis method, a series of electrocatalysts ...
متن کاملEffect of platinum on Ceria supported Cu catalysts for PrOx process in fuel processors
The CO preferential oxidation (PrOx) is one of the critical steps in hydrogen production and purification for Polymer Electrolyte Membrane Fuel Cell (PEMFC). This reaction was investigated in the presence of excess hydrogen over Cu/CeO2, Pt/CeO2 and Cu-Pt/CeO2 catalysts. The ceria supports was prepared via precipitation method and Cu-Pt/CeO2 catalyst was synthesized by sequential impregnation o...
متن کاملNumerical analysis of reactant transport in the novel tubular polymer electrolyte membrane fuel cells
In present work, numerical analysis of three novel PEM fuel cells with tubular geometry was conducted. Tree different cross section was considered for PEM, namely: circular, square and triangular. Similar boundary and operational conditions is applied for all the geometries. At first, the obtained polarization curve for basic architecture fuel cells was validated with experimental data and then...
متن کاملN-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells
The availability of low-cost, efficient, and durable catalysts for oxygen reduction reaction (ORR) is a prerequisite for commercialization of the fuel cell technology. Along with intensive research efforts of more than half a century in developing nonprecious metal catalysts (NPMCs) to replace the expensive and scarce platinum-based catalysts, a new class of carbon-based, low-cost, metal-free O...
متن کاملRecent progress in electrocatalysts with mesoporous structures for application in polymer electrolyte membrane fuel cells
Recently mesoporous materials have drawn great attention in fuel cell related applications, such as preparation of polymer electrolyte membranes and catalysts, hydrogen storage and purification. In this mini-review, we focus on recent developments in mesoporous electrocatalysts for polymer electrolyte membrane fuel cells, including metallic and metal-free catalysts for use as either anode or ca...
متن کامل